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In this paper we are concerned with the continuity of the set-valued mapping
whose values are approximate minima of constrained minimization problems when
the constraint sets are perturbed in a reflexive Banach space and the space of con­
straint sets is equipped with the topology of Mosco convergence. This leads to an
interesting generic theorem on points of single-valuedness of minima of a given
function f on nonempty closed convex subsets of a reflexive Banach space. Using
the continuity results of the general framework, a characterization of lower semi-
continuity of metric projections is given. © 1991 Academic Press. Inc.

1. INTRODUCTION

For many practical and theoretical reasons it is often of interest to study
the stability of solutions of optimization problems under various perturba­
tions of a given problem. Typically, the perturbations may be due to the
rounding errors in numerical computations, approximations used in
solving a given problem, or perhaps due to variations of parameters
involved. Continuous dependence of the optimal values and of the sets of
optimal solutions on perturbations has been explored by several authors
(d., e.g., [8, 10-12, 14-16, 21, 29]). An alternative approach for studying
the stability question, which seems more tractable from a numerical point
of view, relies on the concept of &-approximate solutions. Recently, this
concept has been utilized for both qualitative as well as quantitative
investigation of stability in optimization [15,29,2, l1l

In the framework of a reflexive Banach space X, apparently the most
useful notion of convergence for a sequence of nonempty closed convex
subsets CC(X) of X is the so-called Mosco convergence introduced by
U. Mosco in (18]. Specifically, a sequence <Cn> in CC(X) is said to be
Mosco convergent to an element C in CC(X), written Cn~M C, if (Md for
each x in C there exists a sequence <xn >convergent to x such that for each
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n, X nE Cn, and (M2 ) whenever <n(i) >is an increasing sequence of positive
integers and xn(i) E Cn(i) for each i, then the weak convergence of <xn(i) >
to x E X implies x E C. Identifying lower semicontinuous proper convex
functions ro(X) with their epigraphs, Mosco convergence of a sequence
<In> in ro(X) is defined as the Mosco convergence of their epigraphs.
Equivalently, the sequence <In> is said to be Mosco convergent to an
element I if (M~) for each x in X, there is a sequence <X n >convergent to
x such that I(x) = limnln(xn) and (M~) whenever a sequence <xn> in X is
weakly convergent to an element x in X, then I(x) (; limn In (xn).

For a variety of applications of Mosco convergence, one may consult the
comprehensive monograph [1 J and, in particular, [4, 24J for approxima­
tion theory, [28J for control theory, and [18,22J for variational
inequalities.

In spite of great interest [1, 22J it is only recently in [3 J that a "hit-and­
miss" topology 'r M of the Vietoris type was introduced on CC(X), for X a
Banach space, which is compatible with Mosco convergence in CC(X). In
terms of the standard plus and minus notation for hyperspaces, the Mosco
topology 'rM is generated by all sets of the form

V- == {AECC(X):An V#0}

(KC )+ == {A E CC(X): A n K = 0},

where V is an open subset of X and K is a weakly compact subset of X.
For a detailed investigation of this topology in relation to the other hyper­
space topologies of interest we refer the reader to [3].

This paper is in two parts. The first part synthesizes continuity con­
siderations of e-approximate solutions for minimization problems. The
second part deals with applications to metric projections. Section 3 treats
continuity of the marginal function and of the set-valued function whose
values are e-approximate solutions of constrained minimization problems
when the constraint sets are perturbed in a reflexive Banach space X and
the space CC(X) of constraint sets is equipped with the Mosco topology.
Section 4 deals with upper semicontinuity of the e-approximate solutions
and of the optimal solutions. This leads to an interesting generic theorem
for single-valuedness of points of minima of a given function I on CC(X).
Employing the continuity results in the general framework of Section 3, a
characterization of lower semicontinuity of metric projection is discussed in
Section 5.
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In the sequel, X will be a normed linear space and w will denote the
weak topology of X. The origin and closed unit ball of X will be denoted
by e and U, respectively. Be(xo) will denote the open ball of center Xo and
radius e. Also S (resp. S*) will denote the unit sphere (norm one elements)
of X (resp. the normed dual of X). We write d(x; C) for the distance
between x and the set C, and denote by P(x; C) the set {y E C: II x - y II =
d(x; C)}. We denote by (Rf ) the class of reflexive Banach spaces, by (R)
the class of rotund (strictly convex) normed spaces, and by (R*) the class
of normed spaces whose duals are in (R). Likewise, we denote by (H)
(resp. (H*)) the class of normed spaces for which weak (resp. weak*)
convergence of a net in S (resp. S*) implies its norm convergence. Following
Brown [6J, we denote by (P) the class of normed linear spaces in which
for every pair of elements x, y in X with Ilx + yll :( Ilxll, there exist positive
constants e, b such that liz + eyll :( Ilzll whenever Ilx - zll :( b. In addition to
the class CC(X) of nonempty closed convex subsets of X employed in the
Introduction, we denote by CL(X) (resp. WK(X)) the class of nonempty
closed (resp. nonempty weakly compact) subsets of X.

If T, Yare topological spaces, we call a multifunction r: T::t Y (by
which we mean a set-valued function from T to CL( Y)) lower semicon­
tinuous, abbreviated l.s.c. (resp. upper semicontinuous abbreviated u.s.c.) if
for each open subset V of Y the set {t E T: r(t) E V-} (resp. the set
{t E T: r(t) E V+ } ) is open in T. r is said to be continuous if it is both Ls.c.
as well as u.s.c. If r is u.s.c. and with compact values, then r is called an
usco map [7]. If X is equipped with the topology w, then we employ the
term W-U.S.c. (resp. w-usco) for u.s.c. (resp. usco) map into X so
topologized.

Given a function f: X ~ IR and IX E IR, we denote by sub(f; Cf.) the sublevel
set {x E X: f(x):( IX} of f at height IX. The function f is said to be in.f
bounded (resp. w-in.fcompact) if sub(f; IX) is bounded (resp. w-compact) for
each Cf. E Ikt In case f is convex, the conditions ensuring inf-boundedness,
w-compactness of f are given, e.g., in [20, Theorem 10]. (Compare also
[16, Lemma 2.5J for an alternative condition for inf-boundedness.)

In the sequel 17(X) (resp. A(X)) will denote the class of real functions on
X which are continuous and w-inf-compact (resp. convex, continuous, and
inf-bounded). Clearly if X E (Rf ), then A(X) c 17(X). It is also easily obser­
ved that if K E WK(X), then x ~ d(x; K) is w.1.s.c. This fonows immediately
from the w-lower semicontinuity of the norm. Since in this case the function
d( .; K) is continuous and inf-bounded, we note that it is, in fact, in 17(X)
provided X E (Rf ).
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3. STABILITY OF e-ApPROXIMATE SOLUTIONS

For most of this section, we assume X to be in (Rf ). Given a function
f: X --+ IR, a set C in CC(X), and a number e>°we denote by vf( C)
the number inf f( C) and by arg minf( C) (resp. e-arg miniC» the
set {xEC:f(x)=v(C)} (resp. the set {xEC:f(x)::::;vf(C)+e}). Note
that without additional hypothesis arg minf(C) may be empty; but
e-arg miniC) is nonempty by definition, provided vf( C) > -00. Our first
result gives a characterization of the topology r M on CC(X) in terms of
continuity of the marginal functions C --+ vf( C) for f E I(X).

THEOREM 3.1. Suppose X E (Rf ). Then r M is the weakest topology on
CC(X) for which v/ <CC(X), r M >--+ IR is continuous for each f E I(X).

Proof We first show that if f E I(X) then vf is continuous. Fix
Co E CC(X) and suppose vf(Co) < rx for some rx E IR. Pick up Xo E Co such
that f(xo) < rx. Since f is u.S.c., there is an open neighborhood V of Xo such
that f(x) < rx for all x E V. Clearly Co E V-. For C E V- and x E C n V we
have vf( C) ::::;f(x) < rx, which proves that vf is U.S.c. at C = Co. Lower semi­
continuity of the functional at Co holds trivially if vf(Co) = vf(X), Suppose
vf(Cohf vf(X) and let viCo) > rx for some rx E IR. Let fJ be an arbitrary
number such that fJ~vf(X) and vACo»fJ>rx. Let K=sub(f;fJ). Then
K E WK(X). Obviously Co E (KG) + and for C E (KG) + we have f(x) > fJ for
x E C. Therefore vf(C) ~ fJ > rx, which proves that vf is l.s.c. at C = Co.

It remains to show that if vf is r-continuous for a topology r on CC(X)
for each f E I(X), then r MC r. To this end, let <CA> be a net in CC(X)
such that r-lim A C A = Co E CC(X). It suffices to show that r Arlim A C A = Co.
First, suppose Co E V- for some open subset V of X. Pick X oE Co and e>°
such that Be(xo)cV. Let f(x)=llxo-xll for XEX. Then fEI(X) and
vf(Co) = d(xo; Co) = 0. Since by hypothesis

lim vf( CA) = lim d(xo; CA) =Vf (Co) =0,
A A

we have C A C Be (xo) - C V- eventually. Now let Co E (KC
) + for some

K E WK( X) and assume in order to get a contradiction that Cp n K # 0 for
some subnet <Cp >of the net <CA>' Let Ko be the w-closure of the set
(Up Cp)nK and let f(x)=d(x, Ko), XEX. Then fEI(X) and Vf(Cp) =0
for each j.l, but VACo) = infxE Co d(x; Ko»O, which is a contradiction.
Therefore CAE (KG) + eventually and this proves that r M-lim A CA = Co. I

Remark 3.2. We note that the first part of the preceding theorem, vf is
r M-continuous on CC(X), holds for. an arbitrary normed linear space.

We now come to our main result of this section.
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THEOREM 3.3. If X E (Rf ) and f E A(X), then the map e-arg min;:
<CC(X), r M) --+ <CC(X), r M) is continuous.

Proof Clearly e-arg minf (C) is in CC(X) for each C E CC(X). Let
<C;) ;EA be a net in CC(X) which is r M-convergent to Co in CC(X). To
prove the desired continuity it suffices to show that

(i) if e-arg minf ( Co) E V- for an open set V, then e-arg minf ( C,..) E

V~ eventually, and

(ii) if e-arg minf( Co) E (KC
) + for a set K E WK(X), then e-arg minf (C;J

E (KC) + eventually.

To prove (i), suppose e-arg minf(Co) n V # 0. By convexity of f, there
is a point XoE e-arg minf( Co) n V such that f(xo) < vf (Co) + 8. Using con­
tinuity of f and Theorem 3.1, there is a 'M-open set 91 in CC(X) containing
Co and an open set VI containing Xo such that whenever x E VI and C E 9l,
then

We may assume, without loss of generality, that VI C V. Since Co E Vj n m
and the net <C;) is 'M"convergent to Co, there is an index p. such that
C. E VI n 91 for A~ {.l. Therefore for each ), ~ p., C;. E 9( and there is a
point x;.ECicn VI' By (*) we get f(xJ<vf(C;J+e, which shows that
e-arg minf(C;J n V # 0, that is, B-arg minf (C;J E V-- for it ~ {.l.

To prove (ii), it suffices to show that if K is a weakly compact subset of
X such that B-argminf(C,.JnK1'0 for a subnet <CI') of the net < ),
then B-arg minf(Co) n K # 0, Indeed, let xl' E B-arg minf(CI') n K.
<xI') has a subnset <xv) w-convergent to an element Xo E K. Since (xv)
is bounded, by Lemma 3.5 of [4] we have X oE Co. Also since X E (Rf ) and
f E E(X), using Theorem 3.1, we have

f(xo) ~ lim f(xJ ~ lim vf( C v ) + B~ vA Co) + e.
v v

Therefore XoE B-arg minf( Co) n K and this completes the proof of (ii). I
Recall (cf., e.g., [4]) that given a bounded subset F and a nonempty

subset C of X, the Chebyshev radius rad(F; C) of F in C is the number
inf{r(F; x): XE C} where r(F; x):= sup{llx- yll: YEF}. Any point XE C for
which r(F; x) = rad(F; C) is called a relative Chebyshev center of F in C
and the (possibly empty) set of relative Chebyshev centers of Fin C is denoted
by Cent(F; C). Evidently, since sub(r(F;·); IX) C (ex + diam(F)) U + F,
the convex continuous functionx --+ r(F; x) is inf-bounded. Theorem 3.3
therefore, applicable to the approximate relative chebyshev center map
B-Cent(F; .): CC(X) --+ CC(X) where

B-Cent(F; C):= {x E C: r(F; x) ~ rad(F; C) + 0}
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as well as to its particular case: the approximate metric projection map
e - P(x; . ): CC(X) -+ CC(X) where

e - P(x; C):= {YE C: Ilx- yll ~d(x; C) +e}.

This yields

THEOREM 3.4. Suppose XE(Rj ) and Cn, Co are in CC(X). Consider the
following statements.

(1) Cn -+M Co;

(2) for every e > 0, e-Cent(F; Cn) -+M e-Cent(F; Co) for each bounded
subset F of X;

(3) for every e>O, e-P(x; Cn)~Me-P(x; Co) for each x in X;

(4) for every e>O, d(.;e-P(x;Cn))-+M(d(.;e-P(x;Co))for each
x in X;

(5) d(·; P(x; Cn)) -+M d(·; P(x; Co)) for each x in X;

(6) P(x; Cn) -+M P(x; Co) for each x in X;

(7) d(x; Cn) -+ d(x; Co) for each x in X;

(8) rad(F; Cn) -+ rad(F; Co)for every bounded subset F of X admitting
farthest point;

(9) Cent(F; C) -+M Cent(F; Co) for every bounded subset F of X
admitting farthest point.

We have (1)=>(2)=>(3)¢>(4); (5)¢>(6)=>(7) and (1)=>(8)=>(7). If
XE(R)n(H) than (4)=>(5) and (1)=>(9). Furthermore, if XE(H*) then
(7) => (1). Thus for X in (Rf) n (R) n (H) n (H*) all the nine statements are
equivalent.

Proof (2) => (2) => (3). These implications follow immediately from
Theorem 3.3 and the preceding observations. The implication (1) => (3) is
observed in [19, Proposition 2.3J with a different proof.

(3)¢> (4). These follow immediately from Theorem 2.1 of [22].
(6) => (7). This is easy to see from Proposition 2.2 of [22].
(1) => (8). This follows from Theorem 3.1.
(4) => (5). Under the hypothesis, X E (R) n (H). Since X E (R), let

P(x; C)= {zn} a singleton for each nand P(x; Co)= {zo}. Since Mosco
convergence of a sequence of distance functions implies its pointwise
convergence [22, p. II.4J, we have

IIx - znll = d(x; e - P(x; Cn)) ~ d(x; e - P(x; Co)) = IIx - zoll.

Since XE (Rf ), (zn> has a subsequence (zn(kl> w-convergent to an element
Wo; by (3) we have woEe-P(x;Co) for every e>O. Since P(x;Co)=
n.>oe-P(x;Co)={zo}, we have wo=zo. Since XE(H), we obtain
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Zn(k) --+ ZO° Since every subsequence of <zn) has a subsequence converging
to 20' we conclude that Zn --+ Zo and (5) follows immediately from the weak
lower semicontinuity of the norm function.

(1):=>(9). Under the assumption XE(R)n(H). This is shown in [4,
Cor. 3.11].

(7):=>(1). Under the assumption XE(H*). This is proved in [5,
Thm.3.4]. I

4. BAIRE CATEGORY RESULTS

We first consider the upper semicontinuity of the multifunctions
s-arg minr and arg minf which lead us to explore a generic theorem on
points of single valuedness of the multifunction arg minr in this section.
Throughout this section X will be in (Rr).

THEOREM 4.1. Let 1 E A (X), then lor each s > 0 the multifunction
s-arg min/ (CC(X), TM) --+ CC(X) is w-usco.

Proof The w-compactness of s-arg minAC) for C E CC(X) follows
immediately. To prove that s-arg minf is w-usco, it suffices, therefore, to
show that

s-arg mini I(E) == {C E CC(X): s-arg minf( C) n E # 0}

is TM-closed for each w-closed subset E of X. To this end, let <C).) be a
net in s-arg minil(E) which is TM-convergent to Co. For each index )c,

choose a point x A in s-arg minf( C;J n E. By Theorem 3.1, vf (C;J --+ vf( Co),
and since 1 is w-inf-compact the net <x;.) has a subnet <xl')w-convergent
to an element Xo E E. By Lemma 3.3 of [4], X o E Co and by the same
argument as in part (ii) of Theorem 3.3 we conclude that Xo E

s-arg minf ( Co) n E. This completes the proof of e-arg minf being
w-usco. I

We observe that the proof of the preceding theorem also applies in case
s =o. This yields

COROLLARY 4.2. Let 1 E A (X), then the multifunction arg min/
(CC(X), TM) -7 CC(X) is w-usco.

By Theorem 4.3 of [3], when X is in (Rf ) and separable, CC(X)
equipped with Mosco topology TM is a Polish space (second countable and
completely metrizable). Since (CC(X), TM) is a Baire space, it appears
meaningful to ask: For a given 1 E A (X), is arg mini ( C) single-valued for
most C in CC(X) in the sense of Baire category? The following example
shows that the answer is negative. In fact the collection of sets C for which
arg minr( C) is single-valued need not even be dense in CC(X).

640/64/1-3
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EXAMPLE 4.3. Let X = [Rz, equipped with the Euclidean norm. For each
point (0(1' O(z) in [Rz, let

Letf((xl,xz))=d((xl'xZ); V(O,O)), (X1>Xz)E[Rz. Clearly fEA(X). Let

91= V(1, 1)- n V(1, -1)- n V( -1,1)- n V( -1, -1)-.

Then 91 is r M-open in CC(X) and for C in 91, we have
arg minAC) ='V(O, 0).

In the preceding example, the constraint sets C are allowed to intersect
arg minAX). We note that in this case int arg minf(X) =1= 0 and the con­
straint sets C, are in fact, allowed to intersect int arg minAX). A simple
modification of the preceding example shows that the answer to the above
mentioned question is negative in case int arg minAX) is allowed to
be empty. Indeed, let X and 91 be as in the last example. Let
S:={(x1;0):lxd~0.1} and let g(xl,xz)=d((Xl'XZ);S). Clearly
g EA(X) and int arg ming(X) = int S = 0; but for each C in 91,
arg ming(C) = S. We intend to show that if we exclude these possibilities,
then the answer to the above mentioned question is affirmative.

LEMMA 4.4. Let X be in (Rf ) and be separable. If fEA(X), then the set

Q ={CE CC(X): C n arg minf(X) = 0}

(resp. the set Q ={C ECC(X): C n int arg minf(X) = 0})

equipped with the relative topology is a completely metrizable subspace of
(CC(X), r M).

Proof Clearly Q = (arg minj(XY) + (resp. Q = (int arg minAX) - Y).
Since arg minf(X) is w-compact (resp. int arg minf(X) is open), Q is
an open (resp. closed) subspace of the completely metrizable space
(CC(X), r M)' It follows from the theorem of Alexandroff [27, p. 179J (resp.
follows trivially) that Q equipped with the relative topology is completely
metrizable. I

THEOREM 4.5. Let X be in (Rf ) and be separable. Let CC(X) be equipped
with the topology r M. Assume either

(1) fEA(X) and Q ={CE CC(X): C n arg minf(X) = 0} or

(2) f EA(X) with int arg minf(X) =1= 0 and Q ={C ECC(X): C n
int arg minf(X) = 0}.
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If Q is equipped with the relative topology, then there exists a dense and G(j
subset Qo ofQ such thatfor each C in Qo, argminAC) is a singleton.

Proof This is an obvious modification of the proof of Theorem 4.3 of
[4]. We employ Corollary 4.2 and observe that the restriction of the multi­
function arg minf to Q is w-usco. By a continuity theorem due to Christen­
sen [7] there is a dense and G<5 subset Q 0 of Q such that this restriction
is almost lower semicontinuous on Qo. Let Co E Q o and IX = vf ( Co). In case
(1) we have IX> vf(X) and the convex set sub(f; IX) has nonvoid interior
{xEX:f(x)<IX} which has void intersection with Co. In case (2) if
IX> vf(X), we again conclude as above and if IX = vAX), thensub(f; IX) =
arg minf(X) which has nonvoid interior int arg minf(X) and int sub(f; 0:) n
Co = 0 by hypothesis. In either case we can use the separation therem
and the proof of arg minf ( Co) being singleton can be completed on the
same lines as the proof of Theorem 4.3 of [4]. The details are therefore
omitted. I

A part of the next corollary is already observed in [4].

COROLLARY 4.6. Let X be in (Rf ) and be separable. If CC(X) is equipped
with the topology 1:M, then for each·nonempty bounded subset F of X (resp.
nonempty bounded subset F of X such that int Cent(F; X) i= 0), Cent(F; C)
is a singleton for most C E CC(X) for which C n Cent(F; X) = 0 (resp.
C n int Cent(F; X) = 0).

5. ApPROXIMATE MINIMAL METRIC SELECTIONS

Throughout this section X will be a Banach space. Let C E CC(X). A
continuous function f: X --+ C such that f(x) E P(x; C) for each x in X is
called a metric selection for C. It is an easy consequence of the Michael
selection theorem [17] that if P(·; C) is I.s.c., then there exists a metric
selection for C. By simple examples it is known (cf., e.g., [9]) that the
reverse implication is false. For 8 ~ 0, let pee .; C): X:4 C denote the multi­
function with values pe(x; C) = 8 - P(B; P(x; C)).

DEFINITION. Given 8 > 0, a continuous function f: X --+ C is called an
8-approxima,je minimal metric selection (resp. a minimal metric selection)
for C if f(x)EP 8(x; C) (resp.f(x)EPO(x; C)) for all XEX.

The following theorem charaCterizes lower semicontinuity of P(" C).

THEOREM 5.1. Let C be a closed linear subspace of X. Consider the
following statements.
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(1) For every a> 0, there exists an a-approximate minimal metric
selection for C;

(2) P(·; C) is l.s.c.;

(3) there exists a metric selection f with nulleigenschaft: f(x) = 8
whenever 8 E P(x; C).

Then, we have (1) = (2)~ (3). Moreover, in case X E (Rf ) we have (2) = (1)
and all three statements are equivalent.

Proof (1) = (2). Let Xo E X and V be any open subset of X such that
P(xo; C)n V#0. Choose YoEP(Xo; C)n V, then there exists a>O such
that Bs(Yo)c V. Since 8EP(Xo- Yo; C)n V- Yo, by assumption, there
exists a metric selection fs such that fs (xo- Yo) E Bs(8). Choose a
neighborhood Wo of Zo=Xo- Yo such that fs(z)eB s(8) for every ZE Woo
Set W = Wo+ Yo, which is a neighborhood of Xo' Let x E W, then
x=z+ Yo for some ZE Woo We have

and

fs(z)+ YoEP(Z; C)+ Yo=P(x; C).

Thus fs(z) +YoEP(X; C)nV, which implies that P(x;C)nV=l0 for
every x E W. Since Xo is arbitrary, this proves that P( .; C) is I.s.c.

(2)~ (3). This is proved in [13].
(2) = (1), under the assumption X E (Rf ). Let P(·; C) be l.s.c. For every

a> 0, we claim that P S
(.; C) is l.s.c.; hence by the Michael selection

theorem [17], a-approximate minimal metric selection exists. Let Xo E X
and a sequence <xn >in X be such that Xn ~ Xo' By lower semicontinuity
of P(·; C), it is easy to see that P(xn ; C) ~M P(xo; C). Hence by
Theorem 3.4, PS(xn ; C) ~M P"(xo; C) for every a> 0. This establishes that
P S

( .; C) is l.s.c. for every a > 0. I
RemarksS.2. (1) When XE(Rf ) the proof of (2)=(1) in TheoremS.1

can be given in an alternative manner as follows. Since P(·; C) is l.s.c.,
we have P(xn ; C) ~M P(xo; C) whenever Xn ~ Xo' Hence by Theorem 3.4,
d(8, P(xn ; C)) ~ d(8, P(xo; C)). This implies that the map x ~
d(8, P(x; C)) +a is continuous for each a~ 0. Lemma 7.1 in [17J yields the
existence of an a-approximate minimal metric selection.

(2) The proof of (1) = (2) in Theorem 5.1 is patterned on the same
lines as in the proof of Proposition 1 in [13].

Brown [6] has proved that P(·; C) is l.s.c. for each finite dimensional
subspace of X ~ X E (P). Following Brown, Wegmann [26J showed that if
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X E (P) then P( .; C) is I.s.c. for every approximatively compact convex set
C with property (P): for every x E C, Y E X with x +Y E C, there exist
positive constants e, 15 such that z +ey E C holds for every z E C with
Ilx-zll <b.

In this direction, we have the following theorem characterizing lower
semicontinuity of P(·; C) in case C is not necessarily a linear subspace.

THEOREM 5.3. Let X E (P) and C in CC(X) satisfy property (P). Then
P(·; C) is l.s.c. if and only if there exists a metric selection f for C.

Proof Suppose there exists a metric selection f and assume P(·; C) is
not l.s.c. at xo. Then there exists a sequence <xn> converging to xo,
Yo E P(xo; C), Yo ¥ f(xo), and 15 >°such that

P(xn ;C)nBb (Yo)=0 foreachn. (1)

Since X E (P) and C satisfies property (P), there exist positive numbers
el> e2 such that Ilxn - (f(xn) + e1 (Yo - f(xo))Jj ~ Ilxn - f(xn)ll and
f(xn)+e2( Yo - f(xo» E C hold eventually. Since C is convex, it can be
easily concluded that there exists e E (0, 1) such that both Ilxn- (f(xn)+
&(Yo - f(xo))ll ~ jlxn - f(xn)ll and f(xn)+ e( Yo - f(xo» E C hold even­
tually. Thus we have a sequence <f(xn)+ e(yo - f(xo)) > such that
f(xn)+e(Yo-f(xo»EP(Xn;C) converging to f(xo)+e(Yo-f(xo))E
P(xo;C)· Replacing f(xn) by f(xn)+e(Yo-f(xo» and f(xo) by
f(xo)+e(yo - f(xo» and repeating exactly the same arguments as above
leads to a contradiction of (1). Hence P(·; C) is l.s.c. The "only if" part
follows trivially from the Michael selection theorem. I

In the following theorem we examine the continuity of p O
( .; C).

THEOREM 5.4. Let X E (P) and let C be an approximatively compact
convex subset satisfying property (P). Then p O

( .; C) is continuous.

Proof Let XoEX and let <xn> be any sequence converging to Xo' Let
<Yn> be any sequence such that YnEPO(xn; C). Since P(·; C) is usco [25,
Proposition 2.9], the sequence <Yn> has a subsequence <Yn(k,> converging
to Zo in P(xo; C).

To prove upper semicontinuity of p O
(.; C), it is sufficient to show that

Zo E pO(xo; C), that is, Ilz.oll = d(8, P(xo; C)). Assume the contrary. Then
there is an element z1 in P(xo; C) such that liz 111 < Ilzoll. Since X E (P) and
C is convex with property (P), exactly as in the proof of the last theorem
we can show that there exists eE (0, 1) such that

II Yn(k) + e(z 1 - zo)11 ~ II Yn(k)ll,

Yn(k)+e(ZI- Zo)EC
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and
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I!xn(k) - (Yn(k) + e(ZI - zo))ll ~ Ilxn(k) - Yn(k)11

hold eventually. Thus we have a sequence Yn(k)+e(zl-zo)EPO(Xn(k); C)
converging to zO+e(zl-zO) such that Ilzo+e(zl-zo)ll = Ilzoll. Replacing
Yn(k) by Yn(k)+e(zl-zO) and Zo by zO+e(zl-zO) and repeating the above
arguments contradict the assumption Ilzlll < Ilzoll. Thus ZoEPO(Xo; C).

The proof of lower semicontinuity of p O
(.; C) follows exactly from the

same contradiction argument as in the previous theorem by taking Yn(k) in
place of f(Xn(k)) and Zo in the place of f(xo)' I

Remark 5.5. By the Michael selection theorem, Theorem 5.4 gives
existence of (minimal) metric selection, and hence in conjunction with
Theorem 5.3, yields Theorem 5.5 of [26].
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